Trichorzins HA and MA, Antibiotic Peptides from Trichoderma harzianum

II. Sequence Determination

Sanae Hlimi, Sylvie Rebuffat*, Christophe Goulard, Sylvie Duchamp and Bernard Bodo
Laboratoire de Chimie des Substances Naturelles, URA 401 CNRS, GDR 1153 CNRS, Muséum National d'Histoire Naturelle, 63 rue Buffon, 75231 Paris Cedex 05, France

(Received for publication June 2, 1995)

Abstract

A series of 18 -residue antibiotic-antifungal peptides, trichorzins HA and MA, were isolated from Trichoderma harzianum strains exhibiting antagonistic properties against phytopathogenic fungi. The sequences of the nine major pure peptides isolated by HPLC were determined by positive ion FAB-MS data and two-dimensional NMR measurements, including COSY, HOHAHA, ROESY and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ LRCOSY experiments.

In the preceding paper ${ }^{1)}$, we have described the fermentation, isolation and biological properties of trichorzins HA and MA, two series of original 18-residue peptides biosynthesized by two Trichoderma harzianum strains from distinct geographic origins. Trichorzins are peptaibols, linear peptides with α, α-dialkylated amino acids such as α-amino isobutyric acid (Aib, U) and isovaline (Iva, J), an acetylated N -terminus and a C-terminal amino alcohol. Based on peculiar characteristics, different subclasses of peptaibols are distinguished: long-sequence peptaibols (18- to 20 -residue peptides) $)^{2 \sim 6)}$, short-sequence peptaibols (11- to 16 -residue peptides) ${ }^{7}$ and lipopeptaibols (7- or 11-residue peptides with an N -terminal amino acid acylated by a short lipidic chain instead of an acetyl group) ${ }^{8)}$. Trichorzins have been shown to perturb the permeability properties of phospholipid bilayers, as measured on model membranes and to exert antibiotic activity against Gram-positive bacteria ${ }^{1)}$.

In this paper, we describe the sequence determination of trichorzins HA and MA, original octadecapeptaibols
(Fig. 1), from MS and NMR data.

Results and Discussion
 General Characteristics and Amino Acid Composition and Chirality

The major components of the complex peptide mixtures arising from fermentation of T. harzianum strain M-903602 and M-922835 were isolated by semi-preparative C18 reversed phase HPLC, giving rise to six trichorzins HA from M-903602 strain and three trichorzins MA from M-922835 strain ${ }^{11}$.

The presence of sharp singlets at about 2.0 ppm in the ${ }^{1}$ H NMR spectra of HA and MA peptides, together with the absence of free NH_{2} terminal groups revealed by the negative reaction with ninhydrin, were characteristics of the acetylated N -termini of trichorzins. GC analyses on a Chirasil-L-Val capillary column of the total acidic hydrolyzates after derivatization of the given amino acids, led to the amino acid composition and absolute configuration. Comparisons and coinjections of the

Fig. 1. Sequences of trichorzins HA and MA.

HA I	Ac Aib Gl	Ala	Aib	Aib					Leu	Aib	Pr	Le	Aib Aib	Gln
A II	Ac Aib G	Ala	Aib	Aib Gln			Aib	Gly	Leu	Aib	Pr	L	Aib Iva	
HA III	Ac Aib GI	Ala	Aib	Iva Gln	A	a	Aib	Gl	Leu	Aib	Pro	Le	Aib Aib	Gl
HA V	Ac Aib Gly	Ala	Aib	Iva Gln	ib	al	Aib	Gly	Leu	Aib	Pro	Le	Aib Iv	Gin L
HA VI	Ac Aib Gl	Ala	Aib	Iva Gln		a	Aib	Gly	Leu	Aib	Pro	Le	Aib Iva	Gln
HA VII	Ac Aib Gly	Ala	Aib	va Gln	al	al	Aib	Gl	Leu	Aib	Pr	Le	Aib Iva	Gln
A !	Ac Aib S	Ala							Leu	Ar			ib Aib	僺
MA II	Ac Aib Ser	Ala	Aib	Iva			A	Gly	Leu	Alb	Pro	Le	ib Aib	,
MA III	Ac Aib Ser	Ala	Aib	Iva Gln					Leu	Aib	Pro		ib Aib	Gln Valol

[^0]hydrolyzates with standards assigned the chirality of all the amino acids and of the amino alcohols Leuol and Valol as L and that of the Iva residues as D. Finally, the L-Glx residues obtained in the total hydrolyzates were assigned to L-Gln from observation of the syn and anti ε-protons of the carboxamide groups in the ${ }^{1} \mathrm{H}$ NMR spectra.

Sequence Determination of Trichorzins HA and MA

Positive Ion FAB Mass Spectrometry

Positive ion FAB MS was used for the determination of the sequences, from analysis of continuous series of

Fig. 2. Positive ion FAB mass spectrum of trichorzin HA I.

b_{n} acylium ions ${ }^{9 \sim 11)}$. The tertiary amide link Aib-Pro which very often occurs in such peptides, results in an N -terminal acylium ion N^{+}and a diprotonated C terminal ion $\left[\mathrm{HC}, \mathrm{H}^{+}\right.$, each generating independent

Table 2. Pseudomolecular ion species and sequence-specific fragment ions arising in the $(+)$ ion FAB mass spectra of trichorzins MA.

Ion types	Peptide (MW)					
	$\begin{gathered} \text { MA I } \\ 1732 \\ \mathrm{C}_{80} \mathrm{H}_{140} \mathrm{O}_{22} \mathrm{~N}_{20} \end{gathered}$		$\begin{gathered} \text { MA II } \\ 1746 \end{gathered}$		$\begin{gathered} \text { MA III } \\ 1760 \end{gathered}$	
	m / z	\%	m / z	\%	m / z	\%
$[\mathrm{M}+\mathrm{Na}]^{+}$	1755	(100)	1769	(58)	1783	(62)
M ${ }^{+}$	1733	(2)	1747	(4)	1761	(3)
N^{+}	1122	(10)	1136	(16)	1150	(14)
$[\mathrm{HC}, \mathrm{H}]^{+}$	612	(11)	612	(21)	612	(15)
N	1037	(1)	1051	(2)	1065	(2)
N	924	(1)	938	(2)	952	(1)
N	867	(5)	881	(10)	895	(8)
N	782	(5)	796	(6)	810	(6)
N	669	(16)	683	(22)	697	(15)
C	509	(1)	509	(2)	509	(2)
N	456	(27)	470	(36)	470	(47)
C	381	(4)	381	(6)	381	(6)
N	371	(83)	371	(90)	371	(100)
C	296	(13)	296	(12)	296	(14)
N	286	(58)	286	(82)	286	(73)
C	211	(12)	211	(12)	211	(12)
N	215	(87)	215	(99)	215	(81)
N	128	(96)	128	(100)	128	(70)

The matrix used was α-thioglycerol; the origin of the observed ions, from N^{+}or $[\mathrm{HC}, \mathrm{H}]^{+}$is indicated by N or C, respectively; $\mathrm{H}=1.000$.

Table 1. Pseudomolecular ion species and sequence-specific fragment ions arising in the (+) ion FAB mass spectra of trichorzins HA.

Ion types	Peptide (MW)											
	$\begin{gathered} \text { HA I } \\ 1702 \\ \mathrm{C}_{79} \mathrm{H}_{138} \mathrm{O}_{21} \mathrm{~N}_{20} \end{gathered}$		$\begin{gathered} \text { HA II } \\ 1716 \\ \mathrm{C}_{80} \mathrm{H}_{140} \mathrm{O}_{21} \mathrm{~N}_{20} \end{gathered}$		$\begin{gathered} \text { HA III } \\ 1716 \\ \mathrm{C}_{80} \mathrm{H}_{140} \mathrm{O}_{21} \mathrm{~N}_{20} \end{gathered}$		$\begin{gathered} \text { HA V } \\ 1730 \\ \mathrm{C}_{81} \mathrm{H}_{142} \mathrm{O}_{21} \mathrm{~N}_{20} \end{gathered}$		$\begin{gathered} \text { HA VI } \\ 1744 \\ { }_{32} \mathrm{H}_{144} \mathrm{O}_{21} \mathrm{~N}_{20} \end{gathered}$		$\begin{gathered} \text { HA VII } \\ 1744 \\ { }_{82} \mathrm{H}_{144} \mathrm{O}_{21} \mathrm{~N}_{20} \end{gathered}$	
	m / z	\%	m / z	\%	m / z	$\%$	m / z	\%	m / z	\%	m / z	\%
$[\mathrm{M}+\mathrm{Na}]^{+}$	1725	(16)	1739	(20)	1739	(15)	1753	(14)	1767	(23)	1767	(22)
MH^{+}	1703	(8)	1717	(6)	1717	(4)	1731	(7)	1745	(3)	1745	(4)
N^{+}	1078	(27)	1078	(24)	1092	(10)	1092	(24)	1106	(8)	1106	(13)
$[\mathrm{HC}, \mathrm{H}]^{+}$	626	(26)	640	(29)	626	(16)	640	(18)	640	(15)	640	(19)
N	993	(2)	993	(2)	1007	(1)	1007	(2)	1021	(1)	1021	(1)
N	880	(2)	880	(2)			894	(2)			908	(1)
N	823	(15)	823	(13)	837	(5)	837	(10)	851	(3)	851	(3)
N	738	(8)	738	(7)	752	(3)	752	(6)	766	(3)	766	(3)
N	639	(30)	639	(26)	653	(12)	653	(20)	667	(10)	667	(9)
N	554	(3)	554	(2)	568	(1)	568	(2)			568	(1)
C	509	(4)	523	(3)	509	(3)	523	(2)	523	(3)	523	(3)
N	426	(57)	426	(56)	440	(32)	440	(47)	440	(34)	440	(35)
C	381	(10)	395	(7)	381	(7)	395	(6)	395	(6)	395	(6)
N	341	(100)	341	(100)	341	(86)	341	(80)	341	(85)	341	(88)
C	296	(19)	296	(19)	296	(18)	296	(14)	296	(16)	296	(17)
N	256	(84)	256	(81)	256	(100)	256	(70)	256	(100)	256	(100)
C	211	(14)	211	(13)	211	(17)	211	(12)	211	(16)	211	(18)
N	185	(57)	185	(57)	185	(88)	185	(47)	185	(88)	185	(87)
N	128	(32)	128	(28)	128	(53)	128	(24)	128	(51)	128	- (57)

The matrix used was nitrobenzyl alcohol; the origin of the observed ions, from N^{+}or $[\mathrm{HC}, \mathrm{H}]^{+}$is indicated by N or C, respectively; $(H=1.000)$.
series of b_{n} ions, that superimpose in the spectrum. According to the Roepstorff nomenclature modified by Biemann ${ }^{12,13)}$, the $[\mathrm{HC}, \mathrm{H}]^{+}$ions could be y_{n} diprotonated ammonium ions ${ }^{14,15)}$.

Assignments of the molecular weights of trichorzins HA and MA could be derived from their molecular ion species $[\mathrm{M}+\mathrm{Na}]^{+}$which appeared at higher masses on the positive ion FAB mass spectra (Fig. 2; Tables 1 and 2). At lower masses, the spectra exhibited the complexity resulting from the fragmentation pattern described above.

In addition to the pseudomolecular ions $[\mathrm{M}+\mathrm{Na}]^{+}$ ($m / z 1725$) and MH^{+}(m / z 1703), the FAB MS spectrum of HA I (Fig. 2) showed intense N^{+}and [HC, H] ${ }^{+}$ions at $m / z 1078$ and 626 respectively. Continuous fragment ion series arising from such ions were observed. Taking into account the amino acid composition previously determined, the whole sequence was thus described by successive losses of Aib, Leu, Gly, Aib, Val, Aib, Gln, Aib, Aib, Ala, Gly, Ac-Aib from the N^{+}ion ($\mathrm{m} / \mathrm{z} 1078$, $993,880,823,738,639,554,426,341,256,185,128)$ and Leuol, Gln, Aib, Aib, Leu + Pro, from the [HC, H] ${ }^{+}$ion ($m / z 626,509,381,296,211$). However, due to the presence of isomeric residues and to the lack of a number of sequence-specific ions, the sequences of the other

Fig. 3. Part of the ROESY spectrum of trichorzin MA II.

The spectrum was acquired in $\mathrm{CD}_{3} \mathrm{OH}$ with a mixing time of $300 \mathrm{~ms} ; \omega 2=8.7 \sim 7.2 \mathrm{ppm}, \omega 1=8.7 \sim 7.2 \mathrm{ppm} ; \mathrm{U}$: Aib, J: Iva, Lol: Leuol.

Table 3. ${ }^{1} \mathrm{H}$ NMR specific assignments (δ, ppm) and coupling constants ($J, \mathrm{~Hz}$) of trichorzins HA V and MA II.

Residue	HA V		MA II	
	$\begin{gathered} \alpha \mathrm{H} \\ \delta(J) \end{gathered}$	Other groups $\delta(J)$	$\begin{gathered} \alpha \mathrm{H} \\ \delta \end{gathered}$	Other groups $\delta(J)$
Ac		2.038 s		2.034 s
G (S) 2	$\begin{aligned} & 3.865 \mathrm{~d}(16.6) \\ & 3.707 \mathrm{~d}(16.6) \end{aligned}$		4.15	вН 3.95, 3.86
A3	4.229 q (7.3)	$\beta \mathrm{Me} 1.47$	4.17	$\beta \mathrm{Me} 1.46$
J5		$\beta \mathrm{H} 2.40,1.80 ; \gamma \mathrm{Me} 0.829 \mathrm{t}$ (7.5)		$\beta \mathrm{H} 2.45,1.75 ; \gamma \mathrm{Me} 0.839 \mathrm{t}$ (7.5)
Q6	$3.903 \mathrm{dd}(6.0,8.9)$	$\beta \mathrm{H} 2.11,1.95 ; \gamma \mathrm{H} 2.53 ; 2.39$	3.89	β H 2.21; $\gamma \mathrm{H} 2.53,2.36$
V (L) 8	3.642 d (9.6)	$\begin{aligned} & \beta \mathrm{H} 2.26 \\ & \gamma \mathrm{Me} 1.077 \mathrm{~d}(6.5) ; 0.994 \mathrm{~d}(6.8) \end{aligned}$	4.10	$\beta \mathrm{H}, \gamma \mathrm{H} 1.77$ $\delta \mathrm{Me} 0.954 \mathrm{~d}(6.0) ; 0.903 \mathrm{~d}(6.2)$
G10	$\begin{aligned} & 3.934 \mathrm{~d}(16.4) \\ & 3.674 \mathrm{~d}(16.4) \end{aligned}$		$\begin{aligned} & 3.94 \\ & 3.67 \end{aligned}$	
LI 1	$4.450 \mathrm{dd}(3.7,11.2)$	$\beta \mathrm{H} 1.99,1.58 ; \gamma \mathrm{H} 1.92$ $\delta \mathrm{Me} 0.945 \mathrm{~d}$ (6.4); 0.914 d (6.4)	4.41	β H 1.92, 1.62; γ H 1.92 $\delta \mathrm{Me} 0.945 \mathrm{~d}(6.4) ; 0.903 \mathrm{~d}$ (6.2)
P13	$4.382 \mathrm{~d} \mathrm{(7.9)}$	$\begin{aligned} & \beta \mathrm{H} 2.35,1.75 ; \gamma \mathrm{H} 2.01,1.96 \\ & \delta \mathrm{H} \mathrm{3.94,3.54} \end{aligned}$	4.38	$\begin{aligned} & \beta \mathrm{H} 2.33,1.75 ; \gamma \mathrm{H} 2.01,1.96 \\ & \delta \mathrm{H} \mathrm{3.86}, 3.61 \end{aligned}$
L14	$4.186 \mathrm{dd}(5.1,10.7)$	$\beta \mathrm{H} 1.90,1.66 ; \gamma \mathrm{H} 1.86$ δ Me 1.012 d (6.5); $0.901 \mathrm{~d}(6.4)$	4.12	$\beta \mathrm{H}, \gamma \mathrm{H} 1.86$ $\delta \mathrm{Me} 0.998 \mathrm{~d}(6.2) ; 0.903 \mathrm{~d}(6.2)$
J16		$\beta \mathrm{H} 2.40,1.80 ; \gamma \mathrm{Me} 0.869 \mathrm{t}(7,6)$		
Q17	$4.131 \mathrm{dd}(3.7,11.2)$	ßН 2.17, 2.14, $\gamma \mathrm{H} 2.53,2.36$	4.11	$\beta \mathrm{H} 2.28,2.17 ; \gamma \mathrm{H} 2.54,2.38$
Lol (Vol) 18	4.041	$\beta 1 \mathrm{H} 3.494 \mathrm{dd}(5.6,11.3), 3.534 \mathrm{dd}(5.8,11.3)$ $\beta 2 \mathrm{H} 1.34,1.54 ; \gamma \mathrm{H} 1.54$ $\delta \mathrm{Me} 0.914 \mathrm{~d}(6.4) ; 0.901 \mathrm{~d}(6.4)$	3.69	$\begin{aligned} & \beta 1 \mathrm{H} 3.69 ; \beta 2 \mathrm{H} 1.92 \\ & \gamma \mathrm{Me} 0.960 \mathrm{~d}(6.5) ; 0.933 \mathrm{~d}(6.8) \end{aligned}$
U1, U4, J5, U7, U9, U12, U15, (J) 16		$\begin{aligned} & \beta \mathrm{Me} 1.603,1.580(\times 2), 1.573,1.551 \\ & 1.537,1.529,1.484,1.480,1.467 \\ & 1.461(\times 3), 1.435 \end{aligned}$		$\begin{aligned} & \beta \mathrm{Me}, 1.600,1.567,1.553(\times 2), 1.532 \\ & 1.520,(\times 3), 1.498,1.481(\times 4), 1.450 \\ & 1.434 \end{aligned}$

HA V: $296 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{OD}, 500.13 \mathrm{MHz} ;$ MA II: $296 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{OH}, 500.13 \mathrm{MHz} ; \delta$ are given to the nearest three decimals when obtained from 1D spectra and to the nearest two decimals when obtained from 2D spectra.

Table 4. Chemical shifts (ppm) and ${ }^{3} J_{\mathrm{NHCaH}}$ coupling constants (Hz) of the trichorzin HA amide protons.

Position	Peptide					
	HA I	HA II	HA III	HA V	HA VI	HA VII (a)
U1	8.654	8.656	8.651	8.664	8.650	8.65
G2	8.654 (5.7) (b)	8.656 (5.5) (b)	8.651 n.d.	8.652 (5.5) (b)	8.650 (5.2) (b)	8.66 (5.7) (b)
A3	7.892 (5.0)	7.891 (6.5) (b)	7.888 (5.5)	7.880 (6.5)	7.908 (6.6)	7.90
U4	7.754	7.755	7.769	7.780	7.764	7.80
U5 (J5)*	7.734	7.736	7.654*	7.661*	7.670*	7.84*
Q6	7.939 (4.8)	7.940 (4.8)	7.951 (5.2)	7.948 (4.9)	7.981 (4.6)	7.86
U7 (V7)** (J7)*	7.964	7.964	7.964	7.976	7.880*	7.88**
V8	7.489 (6.2)	7.490 (6.2)	7.442 (6.5)	7.447 (6.1)	7.434 (6.3)	7.50
U9	8.139	8.139	8.098	8.106	8.082	8.21
G10	8.394 (5.6)	8.395 (5.6)	8.387 (5.6)	8.395 (5.7)	8.337 (5.6)	7.928 (5.5) (b)
L11	8.032 (7.9)	8.035 (7.8)	8.014 (7.9)	8.020 (7.9)	8.00 (7.7)	7.92
U12	8.273	8.287	8.245	8.271	8.225	8.16
L14	7.897 (7.6)	7.869 (7.6)	7.894 (7.5)	7.865 (7.6)	7.867 (7.6)	7.88
U15	7.772	7.813	7.769	7.813	7.805	7.80
U16 (J16)*	7.585	7.480*	7.580	7.479*	7.478*	7.50*
Q17	7.810 (7.1)	7.825 (7.1)	7.810 (6.9)	7.831 (7.2)	7.831 (7.3)	7.84
Lol18	7.347 (9.3)	7.342 (9.3)	7.344 (9.3)	7.341 (9.4)	7.341 (9.3)	7.337 (9.3) (b)
ca Q6	7.478	7.480	7.474	7.479	7.478	7.500
عа Q17	7.478	7.480	7.474	7.479	7.478	7.500
es Q6	6.773	6.774	6.770	6.781	6.759	6.766
es Q17	6.773	6.774	6.770	6.781	6.759	6.766

$296 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{OH}, 300.13 \mathrm{MHz}$; (a) due to severe overlapping of the signals, the chemical shifts arise mainly from the 2 D spectra and are given to the nearest two decimal; (b) due to signal superimposition at 296 K , the ${ }^{3} J$ coupling constant was determined at a temperature allowing signal separation; n.d. not determined; symbols * and ${ }^{* *}$ specify the replacement of an Aib residue in the HA sequences for an Iva or a Val, respectively.

Fig. 4. $\quad{ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C}$. LRCOSY spectrum of trichorzin HA V.

Table 5. Chemical shifts (ppm) and ${ }^{3} J_{\mathrm{NHC} \alpha \mathrm{H}}$ coupling constants (Hz) of the trichorzin MA amide protons.

	Position		
	Meptide		
	MA I		MA II
U1	8.598	MA III	
S2	$8.026(5.5)$	$8.027(5.3)$	8.600
A3	$7.928(5.0)$	$7.904(6.3)$	$7.931(6.2)$
U4	7.734	7.782	7.757
U5 (J5)*	7.688	7.610^{*}	7.615^{*}
Q6	$7.928(5.0)$	$7.934(5.0)$	$7.966(4.8)$
U7 (J7)*	8.039	8.028	7.907^{*}
L8	$7.619(6.1)$	$7.590(6.1)$	$7.589(6.0)$
U9	8.148	8.138	8.115
G10	$8.363(5.8)$	$8.361(5.7)$	$8.327(5.5)$
L11	$8.079(7.8)$	$8.072(7.8)$	$8.057(7.9)$
U12	8.148	8.138	8.115
L14	$7.858(7.5)$	$7.851(7.2)$	$7.854(7.3)$
U15	7.769	7.773	7.767
U16	7.581	7.588	7.579
Q17	$7.833(6.9)$	$7.833(6.7)$	$7.832(6.8)$
Vo118	$7.390(8.9)$	$7.419(8.8)$	$7.390(8.8)$
عa Q6	7.461	7.468	7.461
عa Q17	7.461	7.507	7.461
\&s Q6	6.776	6.780	6.776
عs Q17	6.776	6.808	6.776

$296 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{OH}, 300.13 \mathrm{MHz}$; symbol * specifies the replacement of an Aib residue in the MA sequences for an Iva.

The spectrum was acquired in $\mathrm{CD}_{3} \mathrm{OH}$ with a delay of $60 \mathrm{~ms} ; \omega 2=179 \sim 172 \mathrm{ppm}, \omega 1=9.0 \sim 1.0 \mathrm{ppm}$.
trichorzins could not be unequivocally determined by this way (Tables 1 and 2). Particularly, ambiguity remained as regards to the relative position in the sequences of the isomeric Val/Iva residues at positions 5, 7 and 16, and of the Gln and Aib (or $\mathrm{Val} / \mathrm{Iva}$) residues at positions 6 and 7.

NMR Spectroscopy

Complete sequences of trichorzins arose from ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data. At first, COSY and HOHAHA experiments were used for assignments of the proton spin system resonances to residue types. Then, sequential
inter-residue dipolar couplings exhibited by the ROESY spectra afforded sequence determination together with sequential ${ }^{1} \mathrm{H}$ assignments ${ }^{6 \sim 8,16)}$. Finally, 2D heteronuclear ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ COSY and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ LRCOSY optimized for long-range couplings of 5 to 10 Hz enabled sequential carbon assignments to be made and confirmed the above sequences ${ }^{6,8}$.

The amide region of the $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of trichorzins (Fig. 3) had well resolved signals for all the peptides except for HA VII which exhibited strong overlapping. The Gly NHs were readily recognized from their triplet nature, as well as the α, α-dialkylated residues

Table 6. ${ }^{13} \mathrm{C}$ NMR chemical shifts for harzianins HA $\dot{\mathrm{V}}$ and MA II.

HA V			MA II		
Residue	Group	$\delta(\mathrm{ppm})$	Residue	Group	δ (ppm)
Ac	CH_{3}	23.1	Ac	CH_{3}	23.1
G2	$\alpha \mathrm{CH}_{2}$	45.0	S2	$\alpha \mathrm{CH}$	59.4
				$\beta \mathrm{CH}_{2}$	62.0
A3	$\alpha \mathrm{CH}$	53.0	A3	$\alpha \mathrm{CH}$	53.5
	$\beta \mathrm{CH}_{3}$	16.5		$\beta \mathrm{CH}_{3}$	16.4
J5	$\alpha \mathrm{C}$	60.1	J5	$\alpha \mathrm{C}$	60.1
	$\beta \mathrm{CH}_{2}$	26.6		$\beta \mathrm{CH}_{2}$	26.5
	$\gamma \mathrm{CH}_{3}$	7.6		$\gamma \mathrm{CH}_{3}$	7.5
Q6	$\alpha \mathrm{CH}$	58.0	Q6	$\alpha \mathrm{CH}$	58.2
	$\beta \mathrm{CH}_{2}$	26.4		$\beta \mathrm{CH}_{2}$	27.2
	$\gamma \mathrm{CH}_{2}$	32.7*		$\gamma \mathrm{CH}_{2}$	32.8*
V8	$\alpha \mathrm{CH}$	65.1	L8	$\alpha \mathrm{CH}$	56.4
	$\beta \mathrm{CH}$	30.5		$\beta \mathrm{CH}_{2}$	40.6
	$\gamma 1, \gamma 2 \mathrm{CH}_{3}$	20.4, 19.5		$\gamma \mathrm{CH}$	26.0
				$\delta 1, \delta 2 \mathrm{CH}_{3}$	22.9, $21.4{ }^{\dagger}$
G10	$\alpha \mathrm{CH}_{2}$	45.1	G10	$\alpha \mathrm{CH}_{2}$	45.0
LI 1	$\alpha \mathrm{CH}$	54.0	L11	$\alpha \mathrm{CH}$	54.0
	$\beta \mathrm{CH}_{2}$	41.4		$\beta \mathrm{CH}_{2}$	41.3
	$\gamma \mathrm{CH}$	26.0		$\gamma \mathrm{CH}$	25.7
	$\delta 1, \delta 2 \mathrm{CH}_{3}$	23.5; 21.6		$\delta 1, \delta 2 \mathrm{CH}_{3}$	23.5, 21.6^{\dagger}
P13	$\alpha \mathrm{CH}$	64.6	P13	$\alpha \mathrm{CH}$	64.7
	$\beta \mathrm{CH}_{2}$	29.9		$\beta \mathrm{CH}_{2}$	30.0
	$\gamma \mathrm{CH}_{2}$	26.9		$\gamma \mathrm{CH}_{2}$	27.5
	$\delta \mathrm{CH}_{2}$	50.4		$\delta \mathrm{CH}_{2}$	50.4
LI4	$\alpha \mathrm{CH}$	55.4	L14	$\alpha \mathrm{CH}$	55.5
	$\beta \mathrm{CH}_{2}$	40.3		$\beta \mathrm{CH}_{2}$	40.2
	$\gamma \mathrm{CH}$	25.5		$\gamma \mathrm{CH}$	25.5
	$\delta 1, \delta 2 \mathrm{CH}_{3}$	23.5; 21.3		$\delta 1, \delta 2 \mathrm{CH}_{3}$	23.5, 21.7^{\dagger}
J16	$\alpha \mathrm{C}$	61.0			
	$\beta \mathrm{CH}_{2}$	26.6			
	$\gamma \mathrm{CH}_{3}$	7.6			
Q17	$\alpha \mathrm{CH}$	56.0	Q17	$\alpha \mathrm{CH}$	56.3
	$\beta \mathrm{CH}_{2}$	28.4		$\beta \mathrm{CH}_{2}$	28.5
	$\gamma \mathrm{CH}_{2}$	33.2*		$\gamma \mathrm{CH}_{2}$	33.3*
Lol18	$\alpha \mathrm{CH}$	50.9	Vol18	$\alpha \mathrm{CH}$	58.6
	$\beta 1 \mathrm{CH}_{2}$	40.7		$\beta \mathrm{CH}$	29.9
	$\beta 2 \mathrm{CH}_{2}(\mathrm{OH})$	66.0		$\beta 2 \mathrm{CH}_{2}(\mathrm{OH})$	63.7
	$\begin{aligned} & \gamma \mathrm{CH} \\ & \delta 1, \delta 2 \mathrm{CH}_{3} \end{aligned}$	25.6 $22.0,23.8$		$\gamma 1, \gamma 2 \mathrm{CH}_{3}$	19.4, 20.0
$\begin{gathered} \mathrm{U} 1,4,7,9 \\ 12,15 \end{gathered}$	$\alpha \mathrm{C}$	$\begin{aligned} & 58.0,57.9,57.7,57.7 \\ & 57.6,57.4 \end{aligned}$	$\begin{aligned} & \mathrm{U} 1,4,7,9 \\ & 12,15,16 \end{aligned}$	$\alpha \mathrm{C}$	$\begin{aligned} & 58.0,57.9,57.8,57.7 \\ & 57.7,57.6,57.5 \end{aligned}$
$\begin{aligned} & \mathrm{U} 1,4,7,9 \\ & 12,15, \mathrm{~J} 5 \\ & \mathrm{~J} 16 \end{aligned}$	$\beta \mathrm{CH}_{3}$	$\begin{aligned} & 27.5(\times 2), 27.4(\times 2), 26.8 \\ & (\times 2), 24.3(\times 2), 23.8,23.6 \\ & (\times 2), 23.4(\times 3) \end{aligned}$	$\begin{aligned} & \mathrm{U} 1,4,7,9 \\ & 12,15,16 \\ & \text { J5 } \end{aligned}$	$\beta \mathrm{CH}_{3}$	$\begin{aligned} & 27.5(\times 2), 27.4,27.0 \\ & 26.9,26.8,26.6(\times 2), \\ & 23.8,23.5(\times 2), 23.3, \\ & 23.2(\times 3) \end{aligned}$

[^1]Table 7. Chemical shifts (δ, ppm) of the carbonyl groups for trichorzins HA I, HA II, HA III, HA V, HA VI, MA II and MA III.

Residue	Peptide						
	HA I	HA II	HA III	HA V	HA VI	MA II	MA III
Ac	173.6	173.6	173.6	173.5	173.6	173.6	173.6
U1	178.5	178.5	178.5	178.4	178.5	178.1	178.1
G2 (S2) ${ }^{\text {8 }}$	173.2	173.2	173.2	173.1	173.1	$173.8{ }^{8}$	$173.8^{\text {8 }}$
A3	176.5	176.4	176.4	176.4	176.2	176.5	176.3
U4	176.8	176.8	176.8	176.7	176.8	176.7	176.8
U5 (J5)*	178.7	178.7	179.3*	179.2*	179.3*	179.2*	179.2*
Q6	175.7	175.8	175.8	175.7	175.7	175.9	175.9
U7 (J7)*	178.3	178.3	178.3	178.3	178.9*	178.5	178.9*
V8 (L8) ${ }^{\dagger}$	175.2	175.3	175.2	175.2	175.2	176.2^{\dagger}	176.2^{\dagger}
U9	178.9	178.9	178.9	178.8	178.9	179.0	179.0
G10	172.9	172.9	172.9	172.8	172.8	172.8	172.8
L11	175.6	175.7	175.6	175.7	175.6	175.6	175.6
U12	175.0	174.9	175.1	174.9	174.9	175.0	174.9
P13	176.1	176.0	176.2	176.0	176.1	176.2	176.1
L14	176.0	175.9	176.0	175.9	176.0	176.1	176.0
U15	177.3	177.3	177.4	177.2	177.3	177.4	177.4
U16 (J16)*	178.9	178.3*	178.0	178.3*	178.3*	178.0	178.0
Q17	174.3	174.3	174.3	174.3	174.3	174.8	174.8
$\delta \mathrm{CO}$ Q17	177.6	177.6	177.6	177.6	177.7	177.6	177.6
δ CO Q6	177.4	177.3	177.4	177.3	177.3	177.4	177.4

$296 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{OH}, 75.47 \mathrm{MHz}$; symbols, ${ }^{\Phi, *}$ and ${ }^{\dagger}$ specify the replacement in the sequences of trichorzins, of a Gly for a Ser, of an Aib for an Iva and of a Val for a Leu, respectively.

Aib and Iva which appeared as singlets from lack of α proton. The ROESY spectra of trichorzins exhibited continuous series of strong $\mathrm{dNN}(\mathrm{i}, \mathrm{i}+1)$ (Fig. 3), interrupted by the lack of NH protons in the Prol3 residues and accompanied by weaker $\mathrm{d} \alpha \mathrm{N}(\mathrm{i}, \mathrm{i}+1)$. These sequential NOE patterns allowed sequence determination together with sequential assignments (Tables $3 \sim 5$).

The 20 carbonyl groups of trichorzins observed in the ${ }^{13} \mathrm{C}$ spectra (Fig. 4) were assigned from the long-range ${ }^{2} J$ and ${ }^{3} J$ heteronuclear couplings between a CO_{i} group and the $\mathrm{NH}_{\mathbf{i}+1}$ and $\mathrm{H}_{\alpha_{i}+1}$ protons (Fig. 4). The resulting ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ sequential assignments of HA V and MA II, taken as examples, are given in Tables $3 \sim 7$; full sequential assignments of the NH and CO groups of the other trichorzins are in Tables 4, 5 and 7.

Conclusion

The octadecapeptaibols, trichorzins HA and MA, illustrate the pronounced microheterogeneity usually observed for peptaibols and, more generally, for peptides biosynthesized by the polyenzymic pathway ${ }^{17}$. Trichorzins HA differ from trichorzins MA by three substitutions in the sequence, Gly $2 \rightarrow \mathrm{Ser} 2, \mathrm{Va} 18 \rightarrow \mathrm{Leu} 8$ and Leuol18 \rightarrow Valol18. In addition, one, two or three $\mathrm{Aib} \rightarrow$ Iva substitutions at positions 5,7 and 16 in the sequence lead to the diversity which occurs inside each trichorzin group. Such Aib \rightarrow Iva substitutions were also observed previously in the group of 18 -residue peptaibols represented by trichotoxins ${ }^{18,19)}$ and trichokindins ${ }^{20}$. However, this substitution was observed either at position 5 or 16 , but
not at both. Finally, the $\mathrm{Aib} \rightarrow \mathrm{Val}$ replacement at position 7 is unique in this 18 -residue peptaibol series.

Experimental

Amino Acid Analysis

After hydrolysis of HA and MA peptides (HCl 6 N , $110^{\circ}, \mathrm{N}_{2}$), derivatization of the given amino acids and amino alcohols was conducted as previously described ${ }^{6,8)}$. Classically, the GC analyses of the N trifluoroacetyl isopropyl ester derivatives were performed with a Girdel 3000 chromatograph on a Chirasil-L-Val (N-propionyl-L-Valine-tert-butylamide polysiloxan) quartz capillary column (Chrompack, 25 m length, 0.2 mm i.d.), with He (0.7 bar) as carrier gas and a temperature programme: $50 \sim 130^{\circ} \mathrm{C}, 3^{\circ} \mathrm{C} /$ minute; $130 \sim$ $190^{\circ} \mathrm{C}, 10^{\circ} \mathrm{C} /$ minute. Rt (separation factor $\alpha_{\mathrm{L} / \mathrm{D}}$ for the D-L enantiomers): Aib 10.4, L-Ala $14.8(\alpha=1.16)$, L-Glu $33.2(\alpha=1.05)$, L-Gly 17.8, D-Iva $11.2(\alpha=1.02)$, L-Leu $24.2(\alpha=1.11)$, L-Leuol $22.2(\alpha=0.98)$, L-Ser 23.0 $(\alpha=1.05)$, L-Val $17.7(\alpha=1.08)$, L-Valol $18.0(\alpha=0.98)$. A special temperature programme was used for separation of the proline D,L-enantiomers: $50 \sim 110^{\circ} \mathrm{C}$, $3^{\circ} \mathrm{C} /$ minute; plateau at $110^{\circ} \mathrm{C}$ for 10 minute; $100 \sim 190^{\circ} \mathrm{C}$, $10^{\circ} \mathrm{C} /$ minute. Rt (α): l-Pro $25.1(\alpha=1.02)$.
HA I: Aib (8), L-Ala (1), Gly (2), L-Gln (2), L-Leu (2), L-Leuol (1), L-Pro (1), L-Val (1)
HA II: Aib (7), L-Ala (1), Gly (2), L-Gln (2), D-Iva (1), L-Leu (2), L-Leuol (1), L-Pro (1), L-Val (1)

HA III: Aib (7), L-Ala (1), Gly (2), L-Gln (2), D-Iva (1), L-Leu (2), L-Leuol (1), L-Pro (1), L-Val (1)

HA V: Aib (6), L-Ala (1), Gly (2), L-Gln (2), D-Iva (2), L-Leu (2), L-Leuol (1), L-Pro (1), L-Val (1)

HA VI: Aib (5), L-Ala (1), Gly (2), L-Gln (2), D-Iva (3), L-Leu (2), L-Leuol (1), L-Pro (1), L-Val (1)

HA VII: Aib (5), L-Ala (1), Gly (2), L-Gln (2), D-Iva (2), L-Leu (2), L-Leuol (1), L-Pro (1), L-Val (2)

MA I: Aib (8), L-Ala (1), Gly (1), L-Gln (2), L-Leu (3), L-Pro (1), L-Ser (1), L-Valol (1)

MA II: Aib (7), L-Ala (1), Gly (1), L-Gln (2), D-Iva (1), L-Leu (3), L-Pro (1), L-Ser (1), L-Valol (1)

MA III: Aib (6), L-Ala (1), Gly (1), L-Gln (2), D-Iva (2), L-Leu (3), L-Pro (1), L-Ser (1), L-Valol (1).

FAB Mass Spectrometry

Positive ion FAB mass spectra were recorded on a ZAB2-SEQ (VG analytical Manchester, UK) mass spectrometer equipped with a standard FAB source and a cesium ion gun operating at 35 kV . Peptide methanolic solutions were mixed with α-monothioglycerol or 3nitrobenzyl alcohol used as matrices. The resolution was 2000.

NMR Spectroscopy

A 0.5 ml amount of a methanolic $\left(\mathrm{CD}_{3} \mathrm{OH}\right)$ solution of HA and MA peptides (15 mm for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ inverse-detection experiments, $40 \sim 70 \mathrm{mM}$ for directdetection ${ }^{13} \mathrm{C}$ and ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ experiments) in a 5 mm tube (Wilmad) was used for all the NMR experiments, which unless other specification were conducted at 296 K , either on Bruker AC 300, AM 400 or DMX 500 spectrometers equipped with Aspect 3000 or $\times 32$ computers or Aspect station 1 Bruker, respectively. Spectra were obtained by solvent presaturation and referenced to the central component of the quintet due to the $\mathrm{CD}_{2} \mathrm{H}$ resonance of methanol at 3.313 ppm , downfield from TMS. The HOHAHA (300.13 MHz) and ROESY (400.13 MHz) experiments were acquired with mixing times of 120 and 300 ms respectively; typically, 256 experiments of $96 \sim 128$ scans each were performed; relaxation delay 1.5 seconds; size 2 K ; 9.5 ppm spectral width in F 2; zero filling to 1 K in F ; sine bell $(\pi / 2)$ in both dimensions. The reference for ${ }^{13} \mathrm{C}$ NMR spectra was the central component of $\mathrm{CD}_{3} \mathrm{OH}$ at 49.0 ppm downfield from TMS. Direct-detection ${ }^{13} \mathrm{C}$ NMR data were collected at 75.47 MHz on an AC 300 Bruker spectrometer. Typically, ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$-LR COSY experiments (256 experiments of 128 scans each) were performed with spectral width 674 Hz in F 2 (size 1 K) and 1324 Hz in F 1 (size 2 K); different delay times τ ranging between 60 and 80 ms were used. An inverse-detection HMBC experiment was acquired at 125.13 MHz for HA VI with J filter and Z gradient selection (1024 experiments of 32 transients each) with spectral widths 6000 Hz in F2 and 25000 Hz in F1 and a delay time τ of 80 ms .

Acknowledgments

We thank the "Centre de Spectroscopie du CNRS" (Lyon, France) for FAB-MS measurements and Drs. L. Conraux and Y. Prigent (Laboratoire de RMN, Rouen, France) for the

ROESY and the HMBC spectra. This work was supported in part by a grant from the Centre National de la Recherche Scientifique (GDR 1153).

References

1) Goulard, C.; S. Hlimi, S. Rebuffat \& B. Bodo: Trichorzins HA and MA, antibiotic peptides from Trichoderma harzianum. I. Fermentation, isolation and biological properties. J. Antibiotics 48: 1248~1253, 1995
2) Pandey, R. C.; J. C. Cook, Jr. \& K. L. Rinehart, Jr.: High resolution and field desorption mass spectrometry studies and revised structures of alamethicins I and II. J. Am. Chem. Soc. 99: 8469~8483, 1977
3) Jung, G.; W. A. König, D. Leibfritz, T. Ooka, K. Janko \& G. Boнeim: Structural and membrane-modifying properties of suzukacillin, a peptide antibiotic related to alamethicin. Part A. Sequence and conformation. Biochim. Biophys. Acta 45: 164~181, 1976
4) Bodo, B.; S. Rebuffat, M. El Hajil \& D. Davoust: Structure of trichorzianine A IIIc, an antifungal peptide from Trichoderma harzianum. J. Am. Chem. Soc. 107: 6011~6017, 1985
5) Iida, A.; S. Uesato, T. Shingu, M. Okuda, Y. Nagaoka, Y. Kuroda \& T. Fuita: Fungal metabolites. Part 6. Nuclear magnetic study of antibiotic peptides, trichosporin Bs, from Trichoderma polysporum. J. Chem. Soc. Perkin Trans 1: 367~373, 1993
6) Rebuffat, S.; L. Conraux, M. Massias, C. AuvinGuette \& B. Bodo: Sequence and solution conformation of the 20 -residue peptaibols, saturnisporins SA II and SA IV. Int. J. Pept. Prot. Res. 41: 74~84, 1993
7) Rebuffat S.; C. Goulard \& B. Bodo: Antibiotic peptides from Trichoderma harziamum: harzianines HC, prolinerich 14-residue peptaibols. J. Chem. Soc. Perkin 1, 1995: $1849 \sim 1855,1995$
8) Auvin-Guette, C.; S. Rebuffat, Y. Prigent \& B. Bodo: Trichogin A IV, an 11-residue lipopeptaibol from Trichoderma longibrachiatum. J. Am. Chem. Soc. 114: 2170~2174, 1992
9) BrÜckner, H. \& M. Przybylski: Isolation and structural characterization of polypeptide antibiotics of the peptaibol class by high-performance chromatography with field desorption and fast atom bombardment mass spectrometry. J. Chromatogr. 296: 263~275, 1984
10) Iida, A.; M. Okuda, S. Uesato, Y. Takaishi, T. Shingu, M. Morita \& T. Fujita: Fungal methabolites. Part 3. Structural elucidation of antibiotic peptides, trichosporin-B-IIIb, -IIIc, -IVb, -IVc, -IVd and -VIb from Trichoderma polysporum. Application of fast bombardment mass spectrometry/mass spectrometry to peptides containing a unique Aib-Pro peptide bond. J. Chem. Soc. Perkin Trans 1: 3249~3255, 1990
11) El Hajil, M.; S. Rebuffat, D. Lecommandeur \& B. BoDo: Isolation and sequence determination of trichorzianines A, antifungal peptides from Trichoderma harzianum. Int. J. Pept. Prot. Res. 29: 207~215, 1987
12) Roepstorff, P. \& J. Fohlman: Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed. Mass Spectrom. 11: 601, 1984
13) Biemann, K.: Contributions of mass spectrometry to peptide and protein structure. Biomed. Environ. Mass Spectrom. 16: 99~111, 1988
14) Barber, M.; R. S. Bordoli, R. D. Sedgwick, A. N. Tyler \& E. Whalley: Fast atom bombardment mass spectrometry of bradykinin and related oligopeptides. Biomed. Mass Spectrom. 8: 337~342, 1981
15) IIda, J.; A. Ima, Y. Takahash, Y. Nagaoka \& T. Fuitta: Fungal metabolites. Part 6. Nuclear magnetic resonance study of antibiotic peptides, trichosporin Bs, from Trichoderma polysporum. J. Chem. Soc. Perkin Trans 1: 357~365, 1993
16) WÜthrich, K.: NMR of protein and nucleic acid, John Wiley \& Sons, 1986, New York.
17) Mohr, H. \& H. Kleinkauf: Alamethicin biosynthesis. Acetylation of the amino terminus and attachment of phenylalaninol. Biochim. Biophys. Acta: 526, 375~386, 1978
18) Przybbylski, M.; I. Dietrich, I. Manz \& H. Brückner:

Elucidation of structure and microheterogeneity of the polypeptide antibiotics paracelsins and trichotoxin A50 by fast atom bombardment mass spectrometry in combination with selective in situ hydrolysis. Biomed. Mass Spectrom. 11: 569~582, 1984
19) Brückner, H.; W. A. König, M. Aydin \& G. Jung: Trichotoxin A40. Purification by counter-current distribution and sequencing of isolated fragments. Biochim. Biophys. Acta 827: 51~62, 1985
20) Idda, A; M. Sanekata, T. Fuita, H. Tanaka, A. Enoki, G. Fuse, P. J. Rudewicz \& M. Kanal: Structural determination of new antibiotic peptides from T. harzianum. 17th IUPAC International Symposium on the Chemistry of Natural Products, p. 66, 1990, New Dehli, India.

[^0]: Leuol: leucinol; Valol: valinol.

[^1]: *, \dagger Assignments may be reversed within the same column; $296 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{OH}, 75.47 \mathrm{MHz}$.

